

Res2DInv and Res3DInv

- Theory and demonstration

Knud Valdemar T. Lassen

Aarhus GeoSoftware

Program

• Theory

- Introduction to DC and IP theory
- Introduction to inversion theory
- Res2DInv and Res3DInv
 - Distribution and installation of software
 - 2D inversion and hands om exercises
 - Processing, inversion and troubleshooting
 - Presentation and visualization
 - 3D inversion and hands om exercises
 - Same procedure
 - Questions etc.

Terminology

- DC = Direct current method = ERT = Electrical Resistivity Tomography = ERI = Electrical resistivity Imaging etc.
- IP = induced polarization
- Processing = preparation of data before inversion
- Inversion = computation of geophysical model (resistivity and chargeability distribution) from measured data

Theory – Ohm's law

Theory – Ohm's law

$$\rho_a = k \frac{\Delta V_{MN}}{I_{AB}}, \qquad \mathbf{k} = \frac{2\pi}{\left(\frac{1}{AM} - \frac{1}{BM}\right) - \left(\frac{1}{AN} - \frac{1}{BN}\right)}$$

How does current flow in the ground?

There are 3 main modes of current conduction in the subsurface, these are described by Archie's law:

- Bulk water
- Surface conduction
- Surface polarization

Archie's law: 3 current paths

Archie's Law

Examples of resistivities

Sensitivity distribution of different configurations

Sensitivity distribution of different configurations

Sensitivity distribution of different configurations

AGS Aarhus GeoSoftware

Gradient Array

AGS Aarhus GeoSoftware

Pseudosection

© M.H.Loke, Geotomo Software Sdn Bhd, 2019

Inversion theory

What do we have?

A series of measurements of resistivity.

Sequence of measurements to build up a pseudosection

Inversion theory

What do we want?

A model of the resistivity distribution of the subsurface:

Inversion theory – how do we get there

Induced polarization

- Induced polarization is the polarization of the subsurface as a result of the transmitted current
- The measurement and inversion principles for induced polarization are very similar to those of direct current methods, but the measured parameter is different
- Induced polarization can be uesful in detecting minerals, and in distinguishing clay from other sediments with comparable resistivities

Induced polarization – No IP effect example

Induced polarization – Example with IP effcts

What causes the induced polarization effect?

Interpretation

Key requirements for a successful interpretation of geophysical results:

- Good inversion result (low data misfit and correct inversion settings, we will get back to that)
- Good visualization of inversion results (correct axis and color scales, we will also get back to that)
- Prior general knowledge of the geology in the area
- Knowledge about expected resistivity ranges for geological bodies found in the area
- Any additional information if accessible (borehole logs and reports, other geophysical surveys)

Interpretation – example

Interpretation – example

After the break – Res2DInv

Res2DInv

Input: .dat file

- measured data
- a priori information
- coordinates, topography

.ivp file

- Inversion settings

Output: .inv file

- Models and forward
 - calculations from all
 - iterations
- Inversion settings
- Data

Hands on #1 – running a standard inversion

- 1. Install Res2DInv
- 2. Register the license
- 3. Load general_array_simple.dat file by pressing "File -> Read data file" and selecting the file
- 4. Run a simple inversion by pressing "Inversion -> carry out inversion" and select where to save the inversion result

The .dat file – simple example

Header lines

Data lines

(1 2	General array format	example Comme	ent/title line									
ы	3	11 Array type (General array)											
	4	 Array sub-type (unspecified) 											
< ∣	5	Type of measurement	(0=app. resistiv	ity,1=resistance	Header								
	6	 Measurement typ 	e indication										
	7	407 Number of data p	points		••• · · · · · · · · · · · · · · · · · ·								
	8	1 Format of x-coord	diantes (0 or 1 foi	true horizontal c	listances)								
	9	• Flag for IP data											
1	10	4 0.00 0.00	3.00 0.00	1.00 0.00	2.00 0.00	10.158 Number of electrodes, x and z coordinates of C_1 , C_2 , P_1 and P_2							
	11	4 1.00 0.00	4.00 0.00	2.00 0.00	3.00 0.00	10.168 electrodes, apparent resistivity or resistance							
	12	4 2.00 0.00	5.00 0.00	3.00 0.00	4.00 0.00	10.184							
	13	4 3.00 0.00	6.00 0.00	4.00 0.00	5.00 0.00	10.225							
	14	4 4.00 0.00	7.00 0.00	5.00 0.00	6.00 0.00	10.337							
	15	4 5.00 0.00	8.00 0.00	6.00 0.00	7.00 0.00	10.708							
	16	4 6.00 0.00	9.00 0.00	7.00 0.00	8.00 0.00	11.668							
		4 7.00 0.00	10.00 0.00	8.00 0.00	9.00 0.00	12.542							
		4 8.00 0.00	11.00 0.00	9.00 0.00	10.00 0.00	12.871							
J													
- 4		4 23.00 0.00	22.00 0.00	29.00 0.00	30.00 0.00	7.977							
4	13	4 24.00 0.00	23.00 0.00	30.00 0.00	31.00 0.00	7.343							
4	114	4 25.00 0.00	24.00 0.00	31.00 0.00	32.00 0.00	5.907							
4	115	4 26.00 0.00	25.00 0.00	32.00 0.00	33.00 0.00	3.974							
4	116	4 27.00 0.00	26.00 0.00	33.00 0.00	34.00 0.00	6.765							
4	117	End all files wit a	zero										

The .dat file – special formats

- 1. Induced polarization
- 2. Pole-pole and pole-dipole arrays
- 3. Topography
- 4. Global coordinates
- 5. Surveys in water
- 6. Cross borehole data and buried electrodes
- 7. Known boundaries and fixed regions

The .dat file – IP data

1	General array with IP Comment/title line											
2	1.0 Unit electrode distance											
3	11 Array type											
4	• Array sub-type											
5	ту	pe of measu	iremen	t (0=app. 1	esist	ivity,1=res	sistan	ce)Header				
6	• Measurement type indication											
7	228 Number of data points											
8	1 Format of x-coordiantes (0 or 1 for true horizontal distances)											
9	¹ Flag for IP data											
10	Chargeability Type of IP data											
11	$m\nabla/\nabla$ IP data unit IP data											
12	0.0,1.0 Delay, Integration time											
13	4	1.00	0.00	0.00	0.00	2.00	0.00	3.00	0.00	13.301	12.5858	
14	4	2.00	0.00	1.00	0.00	3.00	0.00	4.00	0.00	13.298	12.5886	
15	4	3.00	0.00	2.00	0.00	4.00	0.00	5.00	0.00	13.297	12.5867	
16	4	4.00	0.00	3.00	0.00	5.00	0.00	6.00	0.00	13.297	12.5917	
17	4	5.00	0.00	4.00	0.00	6.00	0.00	7.00	0.00	13.297	12.5953	
18	4	6.00	0.00	5.00	0.00	7.00	0.00	8.00	0.00	13.297	12.6043	
19	4	7.00	0.00	6.00	0.00	8.00	0.00	9.00	0.00	13.299	12.6218	
20	4	8.00	0.00	7.00	0.00	9.00	0.00	10.00	0.00	13.302	12.6501	
21	4	9.00	0.00	8.00	0.00	10.00	0.00	11.00	0.00	13.307	12.6990	
22	4	10.00	0.00	9.00	0.00	11.00	0.00	12.00	0.00	13.317	12.7835	
23	4	11.00	0.00	10.00	0.00	12.00	0.00	13.00	0.00	13.336	12.9266	
24	4	12.00	0.00	11.00	0.00	13.00	0.00	14.00	0.00	13.375	13.1871	
25	4	13.00	0.00	12.00	0.00	14.00	0.00	15.00	0.00	13.458	13.7017	
26	4	14.00	0.00	13.00	0.00	15.00	0.00	16.00	0.00	13.665	14.8151	
27	4	15.00	0.00	14.00	0.00	16.00	0.00	17.00	0.00	14.107	16.9138	
28	4	16.00	0.00	15.00	0.00	17.00	0.00	18.00	0.00	12.544	9.5202	
29	4	17.00	0.00	16.00	0.00	18.00	0.00	19.00	0.00	10.183	-1.7850	
30	4	18.00	0.00	17.00	0.00	19.00	0.00	20.00	0.00	9.640	-2.2646	
	4	19.00	0.00	18.00	0.00	20.00	0.00	21.00	0.00	9.881	-1.0075	
	4							22.00		10.011	-0.8956	
											-1.8721	
											-4.4820	
											15.1685	

The .dat file – Pole-pole and pole-dipole arrays

If the location of the remote electrode(s) for pole-pole and pole-dipole configurations aren't specified the program assumes the conditions for an ideal pole-pole or pole-dipole array is met.

1	Pole-pole survey with remote electrodes not specified											
2	1.00000											
3	11											
4	2											
5	Туре	e of measurement	(0=app.	resistivity,1=r	esistance)							
6	0											
7	295											
8	2											
9	0											
10	2	0.00000	0.00000	1.00000	0.00000	9.71588						
11	2	1.00000	0.00000	2.00000	0.00000	9.77284						
12	2	2.00000	0.00000	3.00000	0.00000	9.82908						
13	2	3.00000	0.00000	4.00000	0.00000	9.91349						
14	2	4.00000	0.00000	5.00000	0.00000	10.04541						
15	2	5.00000	0.00000	6.00000	0.00000	10.27310						
16	2	6.00000	0.00000	7.00000	0.00000	10.72195						
17	2	7.00000	0.00000	8.00000	0.00000	11.68144						
18	2	8.00000	0.00000	9.00000	0.00000	13.53788						
19	2	9.00000	0.00000	10.00000	0.00000	15.54942						
20	2	10.00000	0.00000	11.00000	0.00000	16.61592						
21	2	11.00000	0.00000	12.00000	0.00000	16.94865						
22	2	12.00000	0.00000	13.00000	0.00000	16.68214						
23	2	13.00000	0.00000	14.00000	0.00000	15.68086						
24	2	14.00000	0.00000	15.00000	0.00000	13.75145						
	2	15.00000	0.00000	16.00000	0.0000	12.01413						

1	Pole-pole survey with remote electrodes specified										
2	1.00000										
3	11										
4	2										
5	Type of measurement (0=app. resistivity,1=resistance)										
6	0										
7	Remote electrodes specified Header for remote electrode specification										
8	C2 far electrode X and Y location										
9	-25.000,10.000,0.000										
10	P2 5	far electrode	X and Y locat	tion							
11	60.0	000,0.000,0.00	0								
12	Exac	ct geometric f	actor used n	dication of geor	metric factor u	sed					
13	295										
14	2										
15	0										
16	2	0.00000	0.00000	1.00000	0.00000	9.71588					
17	2	1.00000	0.00000	2.00000	0.00000	9.77284					
18	2	2.00000	0.00000	3.00000	0.00000	9.82908					
19	2	3.00000	0.00000	4.00000	0.00000	9.91349					
20	2	4.00000	0.00000	5.00000	0.00000	10.04541					
21	2	5.00000	0.00000	6.00000	0.00000	10.27310					
22	2	6.00000	0.00000	7.00000	0.00000	10.72195					
23	2	7.00000	0.00000	8.00000	0.00000	11.68144					
24	2	8.00000	0.00000	9.00000	0.00000	13.53788					
	2	9.00000	0.00000	10.00000	0.00000	15.54942					

AGS Aarhus GeoSoftware

The .dat file – topography – 2 options

In separate list:

356 4 \$8,00000 0 94,00000 0 82,00000 0 1460,00000 3 11 357 4 60,00000 0 96,00000 0 72,00000 0 84,00000 3 11 357 4 60,00000 0 72,00000 0 84,00000 3 11 357 4 60,00000 0 72,00000 0 84,000000 5 79 350 2 1 for true horizontal, 2 for surface distances 5 79 6 0 0 361 -36,0.044 8 1 3 1 9 0 7 40 362 -32,0.311 8 1 1 4 1 4 1 4 4 1 4 4 1 4<	355	4 56.0000	0 0 92.00000 0 68.00000 0 80.00000 0 1091.00000	1	Genera
357 4 60.0000 96.00000 72.00000 0 1680.00000 3 11 359 Topography in separate list Header for topography 4 0 5 Typ 360 2 1 for true horizontal, 2 for surface distances 5 Typ 6 0 361 -36,0.044 7 40 7 40 362 -36,0.044 7 40 7 40 363 -32,0.311 9 9 9 10 4 364 -30,0.503 10 4 11 4 366 -26,1.161 12 4 4 13 4 366 -22,0.269 15 4 13 4 4 373 -16,2.483 14 <	356	4 58.0000	0 0 94.00000 0 70.00000 0 82.00000 0 1160.00000 Last 3 data lines	2	1.0
359 Topography in separate list Header for topography 4 0 359 2 1 for true horizontal, 2 for surface distances 5 Ty 361 -36,0.044 7 40 363 -36,0.044 7 40 364 -30,0.503 10 4 365 -28,0.712 11 4 366 -28,0.712 11 4 366 -28,0.712 13 4 366 -28,0.712 14 4 366 -28,0.712 14 4 366 -28,0.712 14 4 366 -28,0.712 13 4 366 -28,0.712 13 4 366 -28,0.712 13 4 367 -28,0.712 13 4 368 -20,2.2.65 15 4 371 -16,2.483 14 4 372 -3,0.443 16 4 374 -10,3.443 20 4 375 -8,3.758 21 <td< td=""><td>357</td><td>4 60.0000</td><td>0 96.00000 0 72.00000 0 84.00000 0 1680.00000</td><td>3</td><td>11</td></td<>	357	4 60.0000	0 96.00000 0 72.00000 0 84.00000 0 1680.00000	3	11
359 2 1 for true horizontal, 2 for surface distances 5 Ty 360 24 Number of topography points 6 0 361 -36, 0.044 7 40 362 -34, 0.134 8 1 363 -32, 0.311 9 0 4 364 -30, 0.503 10 4 365 -28, 0.712 11 4 366 -26, 1.161 12 4 366 -26, 1.449 13 4 366 -22, 1.833 16 4 370 -18, 2.578 16 4 371 -16, 2.413 17 4 373 -12, 3.088 16 4 374 -10, 3.443 20 4 375 -8, 3.758 21 4 376 -6, 3.924 22 4 377 -4, 4.122 23 4 378 0, 4.526 24 4 379 0, 4.526 24 4 384 4, 5.028	358	Topography	in separate list Header for topography	4	0
360 24 Number of topography points 7 40 361 -36,0.044 7 40 362 -34,0.0134 7 40 363 -32,0.311 9 0 364 -30,0.503 10 4 365 -28,0.712 11 4 366 -26,1.161 12 4 367 -24,1.492 13 4 369 -20,2.269 15 4 370 -16,2.483 16 4 372 -14,2.714 12 4 373 -6,3.924 16 4 375 -8,3.758 16 4 376 -6,3.924 22 4 378 -2,4.306 23 4 379 0,4.526 23 4 380 2,4.747 23 4 381 4,5.014 23 4 382 6,5.104 23 4 383 6,5.111 34 4 384 0,5.138 1	359	² 1 for tru	ue horizontal. 2 for surface distances	5	Type o
361 -36, 0.044 8 1 362 -34, 0.134 8 1 363 -32, 0.311 9 0 364 -30, 0.503 10 4 365 -28, 0.712 11 4 366 -26, 1.161 12 4 367 -24, 1.492 13 4 368 -20, 2.269 15 4 370 -18, 2.578 16 4 371 -16, 2.483 16 4 372 -14, 2.714 15 4 373 -8, 3.758 16 4 374 -10, 3.443 20 4 375 -8, 3.758 21 4 376 -6, 3.924 22 4 378 -2, 4.306 24 4 379 0, 4.526 24 4 380 2, 1.431 24 4 381 4, 5.028 24 4 382 6, 5.101 24 4 384 10, 5.138 24 <td>360</td> <td>²⁴ Numbe</td> <td>er of topography points</td> <td>6</td> <td>0</td>	360	²⁴ Numbe	er of topography points	6	0
362 -34, 0.134 9 363 -32, 0.311 9 364 -30, 0.503 10 365 -28, 0.712 11 366 -26, 1.161 12 367 -24, 1.492 13 368 -22, 1.833 14 369 -0.52265 15 370 -18, 2.578 15 371 -16, 2.493 17 372 -14, 2.714 17 373 -12, 3.088 17 4375 -6, 3.924 20 376 -6, 3.924 22 377 -4, 4.122 22 378 -2, 4.306 23 379 0, 4.526 23 380 2, 4.747 23 381 4, 5.028 24 382 6, 5.104 23 383 1 Topography data point coinciding with first electrode 386 0 End of file	361	-36,0.044		7	407
363 -32,0.311 9 0 364 -30,0.503 10 4 365 -28,0.712 11 4 366 -26,1.161 12 4 367 -24,1.492 13 4 369 -20,2.269 15 4 370 -18,2.578 16 4 371 -16,2.483 17 4 372 -14,2.714 18 4 373 -12,3.088 16 4 374 -10,3.443 20 4 375 -8,3.758 21 4 376 -6,3.924 22 4 377 -4,4.122 23 4 378 -2,4.306 22 4 379 0,4.526 25 4 380 2,4.747 20 4 381 4,5.028 25 4 382 6,5.104 4 4 383 1 Topography data point coinciding with first electrode 4 386 0	362	-34,0.134		8	1
364 -30,0.503 10 4 365 -28,0.712 11 4 367 -24,1.492 13 4 368 -22,1.833 14 4 369 -20,2.269 15 16 370 -18,2.578 16 4 371 -16,2.483 17 4 372 -14,2.714 18 4 373 -12,3.086 17 4 374 -10,3.443 20 4 375 -8,3.758 21 4 376 -6,3.924 22 4 377 -4,4.122 23 4 380 2,4.747 24 23 381 4,5.028 24 24 382 6,5.104 25 26 383 8,5.111 26 27 384 10,5.138 1 10 4 385 1 Topography data point coinciding with first electrode 26 386 0 End of file 27 <td>363</td> <td>-32,0.311</td> <td></td> <td>9</td> <td>0</td>	363	-32,0.311		9	0
365 -28, 0.712 11 4 366 -26, 1.161 12 4 367 -24, 1.492 13 4 368 -20, 2.269 15 4 370 -18, 2.578 16 4 371 -16, 2.483 17 4 372 -14, 2.714 17 4 373 -8, 3.308 16 4 374 -10, 3.443 20 4 376 -6, 3.924 21 4 376 -6, 3.924 21 4 377 -4, 4.122 23 4 378 -2, 4.306 24 23 379 0, 4.526 24 23 381 4, 5.028 24 25 382 6, 5.104 38 8, 5.111 384 10, 5.138 1 10 5.138 385 1 Topography data point coinciding with first electrode 1 386 0 End of file 1	364	-30,0.503		10	4
366 -26, 1.161 12 4 367 -24, 1.492 13 4 368 -22, 1.833 14 4 369 -20, 2.269 15 4 370 -18, 2.578 16 4 371 -16, 2.483 16 4 372 -14, 2.714 18 4 373 -12, 3.088 19 4 374 -10, 3.443 20 4 375 -8, 3.758 20 4 376 -6, 3.924 21 4 377 -4, 4.122 23 4 378 -2, 4.306 24 4 379 0, 4.526 24 4 382 6, 5.104 25 4 383 8, 5.111 26 4 384 10, 5.138 26 4 385 1 Topography data point coinciding with first electrode 4 386 0 End of file 4	365	-28,0.712		11	4
367 -24, 1.492 13 4 368 -22, 1.833 14 4 369 -20, 2.269 15 4 371 -16, 2.483 16 4 372 -14, 2.714 17 4 373 -12, 3.088 17 4 374 -10, 3.443 19 4 375 -8, 3.758 20 4 376 -6, 3.924 21 4 376 -2, 4. 306 21 4 377 -4, 4.122 23 4 378 -2, 4. 306 23 4 379 0, 4.526 23 4 380 2, 5.104 25 4 382 6, 5.104 25 4 383 8, 5.111 34 35 1 384 10, 5.138 35 1 Topography data point coinciding with first electrode 4 386 0 End of file 4 4	366	-26,1.161		12	4
368 -22, 1.833 14 4 369 -20, 2.269 15 4 370 -18, 2.578 16 16 371 -16, 2.483 16 16 372 -14, 2.714 17 4 373 -12, 3.088 18 4 374 -10, 3.443 20 4 375 -8, 3.758 20 21 376 -6, 3.924 22 4 377 -4, 4.122 23 4 378 -2, 4.306 22 4 379 0, 4.526 25 4 380 2, 4.747 25 4 381 4, 5.028 25 4 382 6, 5.104 25 4 383 8, 5.111 26 4 384 10, 5.138 1 10 4 385 1 Topography data point coinciding with first electrode 5 386 0 End of file 5	367	-24,1.492		13	4
369 -20, 2.269 15 4 370 -18, 2.578 16 4 371 -16, 2.483 17 4 372 -14, 2.714 18 4 373 -12, 3.088 19 4 374 -10, 3.443 20 4 375 -8, 3.758 21 4 376 -6, 3.924 22 4 377 -4, 4.122 23 4 378 -2, 4.306 24 4 379 0, 4.526 24 4 380 2, 4.747 25 4 381 4, 5.028 25 4 382 6, 5.104 8 5.111 384 10, 5.138 5 1 5 385 1 Toppography data point coinciding with first electrode 5 9 End of file 5 4	368	-22,1.833		14	4
370 -18,2.578 16 4 371 -16,2.483 17 4 372 -14,2.714 18 4 373 -12,3.088 19 4 374 -10,3.443 19 4 375 -8,3.758 20 4 376 -6,3.924 21 4 377 -4,4.122 23 4 379 0,4.526 24 4 380 2,4.747 25 4 381 4,5.028 25 4 382 6,5.104 8 5.111 4 383 8,5.111 10,5.138 4 6 384 10,5.138 4 6 6 385 1 Topography data point coinciding with first electrode 6 6 386 0 End of file 4 6	369	-20,2.269		15	4
371 -16,2.483 17 4 372 -14,2.714 18 4 373 -12,3.088 19 4 374 -10,3.443 20 4 375 -8,3.758 21 4 376 -6,3.924 22 4 377 -4,4.122 23 4 378 -2,4.306 24 4 380 2,4.747 23 4 381 4,5.028 24 4 382 6,5.104 25 4 383 8,5.111 10,5.138 1 10 384 10,5.138 1 Topography data point coinciding with first electrode 1 386 0 End of file 1 1	370	-18,2.578		16	4
372 -14, 2.714 18 4 373 -12, 3.088 19 4 374 -10, 3.443 20 4 375 -8, 3.758 21 4 376 -6, 3.924 22 4 377 -4, 4.122 23 4 379 0, 4.526 24 4 380 2, 4.747 26 4 381 4, 5.028 24 4 382 6, 5.104 25 4 384 10, 5.138 1 Topography data point coinciding with first electrode 4 386 0 End of file 5 4	371	-16,2.483		17	4
373 -12,3.088 10 19 4 374 -10,3.443 20 4 375 -8,3.758 21 4 376 -6,3.924 22 4 377 -4,4.122 23 4 378 -2,4.306 24 4 379 0,4.526 25 4 380 2,4.747 25 4 381 4,5.028 25 4 382 6,5.104 26 4 383 8,5.111 1 70pography data point coinciding with first electrode 4 385 1 Topography data point coinciding with first electrode 6 6 386 0 End of file 1 1 1	372	-14,2.714	Tanagraphy data y acardinata, alevatian	18	4
374 -10, 3. 443 20 4 375 -8, 3. 758 21 4 376 -6, 3. 924 22 4 377 -4, 4. 122 23 4 378 -2, 4. 306 24 4 379 0, 4. 526 25 4 380 2, 4. 747 25 4 381 4, 5. 028 26 4 382 6, 5. 104 38 8, 5. 111 384 10, 5. 138 1 Topography data point coinciding with first electrode 386 0 End of file 5	373	-12,3.088	ropography data: x-coordinates, elevation	19	4
375 -8, 3.758 21 4 376 -6, 3.924 22 4 377 -4, 4.122 23 4 378 -2, 4.306 24 4 379 0, 4.526 25 4 380 2, 4.747 26 4 381 4, 5.028 26 4 382 6, 5.104 8, 5.111 4 384 10, 5.138 1 Topography data point coinciding with first electrode 4 386 0 End of file 5 4	374	-10,3.443		20	4
376 -6,3.924 22 4 377 -4,4.122 23 4 378 -2,4.306 24 4 379 0,4.526 24 4 380 2,4.747 26 4 381 4,5.028 26 4 382 6,5.104 38 8,5.111 384 10,5.138 1 Topography data point coinciding with first electrode 386 0 End of file 4	375	-8,3.758		21	4
377 -4, 4.122 23 4 378 -2, 4.306 24 4 379 0, 4.526 25 4 380 2, 4.747 26 4 381 4, 5.028 26 4 382 6, 5.104 38 8, 5.111 384 10, 5.138 1 Topography data point coinciding with first electrode 386 0 End of file End of file	376	-6,3.924		22	4
378 -2,4.306 24 4 379 0,4.526 25 4 380 2,4.747 26 4 381 4,5.028 26 4 382 6,5.104 38 8,5.111 384 10,5.138 1 Topography data point coinciding with first electrode 386 0 End of file -	377	-4,4.122			4
379 0, 4.526 25 4 380 2, 4.747 26 4 381 4, 5.028 25 4 382 6, 5.104 383 8, 5.111 384 10, 5.138 1 Topography data point coinciding with first electrode 386 0 End of file 5	378	-2,4.306			
380 2, 4.747 26.04 381 4, 5.028 382 382 6, 5.104 383 383 8, 5.111 384 10, 5.138 1 Topography data point coinciding with first electrode 386 0 End of file	379	0,4.526			
 4,5.028 6,5.104 8,5.111 10,5.138 1 Topography data point coinciding with first electrode End of file 	380	2,4.747			
 382 6,5.104 383 8,5.111 384 10,5.138 385 1 Topography data point coinciding with first electrode 386 0 End of file 	381	4,5.028			
 383 8,5.111 384 10,5.138 385 1 Topography data point coinciding with first electrode 386 0 End of file 	382	6,5.104			
 10, 5, 138 1 Topography data point coinciding with first electrode End of file 	383	8,5.111			
 1 Topography data point coinciding with first electrode End of file 	384	10,5.138			
386 • End of file	385	1 Topogra	aphy data point coinciding with first electrode		
	386	End of the second of the second se	file		

In data lines, as z coordinates:

1	Gener	al array	v form	at with to	oorap	hv example				
2	1.0									
3	11									
4	0									
5	Type	of measu	iremen	t (O=app.	resist	ivity.1=res	sistan	ce)		
6	0			to to app.	200100	1,10,11 10.				
7	407									
8	1									
9	0		\frown		\frown		\frown		\frown	
10	4	0.00	1.78	3.00	1.68	1.00	1.93	2.00	1.89	10,158
11	4	1.00	1.93	4.00	1.32	2.00	1.89	3.00	1.68	10.168
12	4	2.00	1.89	5.00	1.32	3.00	1.68	4.00	1.32	10.184
13	4	3.00	1.68	6.00	0.31	4.00	1.32	5.00	1.32	10.225
14	4	4.00	1.32	7.00	0.48	5.00	1.32	6.00	0.31	10.337
15	4	5.00	1.32	8.00	0.83	6.00	0.31	7.00	0.48	10,708
16	4	6.00	0.31	9.00	1.31	7.00	0.48	8.00	0.83	11.668
17	4	7.00	0.48	10.00	1.78	8.00	0.83	9.00	1.31	12.542
18	4	8.00	0.83	11.00	1.93	9.00	1.31	10.00	1.78	12.871
19	4	9.00	1.31	12.00	1.89	10.00	1.78	11.00	1.93	13.238
20	4	10.00	1.78	13.00	1.68	11.00	1.93	12.00	1.89	13.342
21	4	11.00	1.93	14.00	1.32	12.00	1.89	13.00	1.68	13.231
	4	12.00	1.89	15.00	1.32	13.00	1.68	14.00	1.32	12.855
	4	13.00	1.68	16.00	0.31	14.00	1.32	15.00	1.32	12.511
		14.00	1.32	17.00	0.48	15.00	1.32	16.00	0.31	11.598
		15.00	1.32	18.00	0.83	16.00	0.31	17.00	0.48	10.471
		16.00	0.31	19.00	1.31	17.00	0.48	18.00	0.83	9.203
		17.00				10.00		10.00		0.050

The .dat file – global coordinates

794	4	235.00	4.82	355.00	7.41	305.00	8.33	315.00	8.44	138.0700			
795	4	235.00	4.82	355.00	7.41	315.00	8.44	325.00	8.28	134.3600	l A last A data Basa sa tanangan bulan dian		
796	4	235.00	4.82	355.00	7.41	325.00	8.28	335.00	8.00	138.9900	Last 4 data lines, or topography section		
797	4	235.00	4.82	355.00	7.41	335.00	8.00	345.00	7.72	138.6200			
798	0												
799	Global Coordinates present												
800	Number of coordinate points Header IIIIes												
801	17 Number of corrdinate points												
802	102 Local Longitude Latitude Header ine												
803	85.00	572088.12	6222426.5	7 X-coordinate	along profile.	Lonaitude/UTI	MX. Latitude/	/UTMY					
804	90.00	572088.28	6222421.5	8	J	J	,						
805	110.00	572088.91	6222401.6	0									
806	115.00	572089.07	6222396.6	1									
807	120.00	572089.23	6222391.6	2									
808	125.00	572089.39	6222386.6	6									
809	160.00	572090.50	6222351.6	6									
810	165.00	572090.66	6222346.6	7									
811	170.00	572090.82	6222341.6	8									
812	175.00	572090.98	6222336.6	8									
813	200.00	572091.77	6222311.7	2									
814	205.00	572091.93	6222306.7	4									
815	250.00	572093.36	6222261.8	5									
816	255.00	572093.52	6222256.8	8									
817	260.00	572093.67	6222251.9	1									
818	325.00	572098.11	6222187.2	8									
819	355.00	572100.26	6222157.4	4									
820	End of	f file											

Note: topography information must always come before global coordinates, coordinates must be in meters!

The .dat file – surveys in water – several options

Case 2 : Some electrodes underwater and on land

Case 4 : Electrodes on surface with limited water cover

Several options:

Case 1 : All electrodes underwater on bottom

Case 3 : Electrodes floating on water surface

Case 5 : Electrodes suspended in water layer

- The water layer can be modelled
- Resistivity must be known
- Big impact on inversion result, especially for saline water

See manual and file examples for specific formats, or ask.

The .dat file – cross borehole and buried electrodes

Data format specified in section 7.4 of the manual, please note:

AGS 🔊

arhus GeoSoftware

- All electrodes must be specified in beginning of file
- Consider using resistance values as apparent resistivitiy calculations are not universally agreed on
- Define dummy electrodes to fulfill format requirements
- Note that topography must be provided as the elevation of the surface electrodes
- Format of data lines is as usual, but electrode positions must be consistent
| BOREDIFF.DAT file | Comments |
|----------------------------------|---|
| Borehole electrodes at different | Name of survey line |
| depths | |
| 1.0 | Unit electrode spacing |
| 12 | Array number 12 for cross-borehole survey |
| 840 | Number of data points |
| 2 | 2 to indicate XZ location format is used |
| 0 | 0 for no I.P. |
| Surface Electrodes | Header for surface electrodes |
| 16 | Number of surface electrodes |
| 0.0, 0.0 | <i>x-</i> and <i>z-</i> location of first surface electrode |
| 1.0, 0.0 | Location of second surface electrode |
| | Note 0.0 z value for surface electrode |
| | Similar format for other surface electrodes |
| | |
| 15.0, 0.0 | Last surface electrode |
| Number of boreholes | Header |
| 2 | Two boreholes in this data set |
| Borehole 1 Electrodes | Header for first borehole |
| 10 | Number of electrodes in first borehole |
| 4.0, 1.0 | <i>x- and z-location of first electrode</i> |
| 4.0, 2.0 | x- and z-location of second electrode |
| 4.0, 3.0 | Note electrodes are listed from the topmost |
| | below the surface downwards |
| | Similar format for other borehole electrodes |
| | |
| 4.0, 10.0 | Last electrode in first borehole |
| Borehole 2 Electrodes | Header for second borehole |
| 10 | Number of electrodes in second borehole |
| 11.0, 1.5 | <i>x- and z-location of first electrode</i> |
| 11.0 2.5 | <i>x-</i> and <i>z-</i> location of second electrode |
| | |
| | Similar format for other borehole electrodes |
| 11.0, 10.5 | Last electrode in second borehole |
| Measured data | Header for section with the measurements |
| 3 0.0 0.0 1.0 0.0 2.0 0.0 | The format for each data point is :- |
| 101.5718 | |
| 3 0.0 0.0 2.0 0.0 3.0 0.0 | Number of electrodes used in measurement, |
| 99.5150 | |
| 3 0.0 0.0 3.0 0.0 4.0 0.0 | x- and z-location of C1, C2, P1, P2 |
| 99.2303 | |
| 99.1325 | electrodes, apparent resistivity value. |
| | |
| | Same format for other data points |
| | |
| 3 11.0 11.0 11.0 3.5 11.0 2.50 | Last data point |
| 120.8297 | |
| 0,0,0,0 | End with a few zeros. |

The .dat file – known boundaries and fixed regions

The .dat file – known boundaries and fixed regions

It is possible to specify the resistivity of known regions of the subsurface:

	4	7.00000	0.00000	37.00000	0.00000	17.00000	0.0000	27.00000	
252	4	8.00000	0.00000	38.00000	0.00000	18.00000	0.00000	28.00000	
253	4	9.00000	0.00000	39.00000	0.00000	19.00000	0.00000	29.00000	Last 3 data lines
254	4	10.00000	0.00000	40.00000	0.00000	20.00000	0.00000	30.00000)	
255	0	Topography i	nformation (no	one in this case)					
256	2	Number of fix	(ed regions	· · · · · · · · · · · · · · · · · · ·					
257	R	Shape of fixe	d region (R=re	ectangular, T=tri	angular)		CV	-	ter af summer left and lessen while the summer of mentancels
258		24.00000,	0.70000,	28.00000,	0.70000,	2.00000,	2.00000	and Z coordina	tes of upper left and lower right corner of rectangle,
259	т	Shape of fixe	d region (R=re	ectangular. T=tri	angular)		Cie	sistivity value, c	
260		30.00000,	0.00000,	30.00000,	3.00000,	45.00000,	3.00000,	10.00000, X	and Z coordinates of all 3 corners of triangle, resistivity
261	0	End all files w	vit a zero					Cv	alue, damping factor

The damping factor controls how much the resistivity can vary during the inversion, 1.0 means that the resistivity can vary normally during the inversion, typical values range between 1.5 and 2.5, a high value e.g. 100 means that the resistivity of the region is completely fixed during inversion

The .dat file – known boundaries and fixed regions

It is possible to specify the depth to a known layer boundary e.g. from a seismic survey, even though the resistivities of the layers are unknown.

The format is very similar to the topography format, see section 7.10 of the manual

Hands on #2 – running an unsatisfactory inversion

- 1. Open Res2DInv
- 2. Load "GRUNDF1.dat" select "OK" in all popups and run inversion with standard settings

Troubleshooting an unsatisfactory inversion

- 1. Removal of bad data points
- 2. Inversion method
- 3. Model discretization
- 4. Damping/smoothing settings

Processing / removal of outliers – pre inversion

- 1. Load a data file
- 2. Select 'Edit->Exterminate bad data points'
- 3. Click the datapoints to remove
- 4. Exit, save modified data, reload

Function of keys to remove data points

To remove a data point, move the cursor to the point and click the left mouse button. To restore a point, click it again. The keys below will remove different sets of data points sharing a common electrode with the selected data point.

A : Points using the present C1 electrode

B : Points using the present C2 electrode

- C : Points using the present C1 or C2 electrode
- M : Points using the present P1 electrode
- N : Points using the present P2 electrode
- P: Points using the present P1 or P2 electrode
- L : All points in the data level is removed
- R : Restore all points in the data level

To remove a series of data points on the same profile, move the cursor to the left point and click the right mouse button. Next move the cursor to the right point and click the right mouse button.

Processing / removal of outliers – simple example

Before:

After:

AGS Aarhus GeoSoftware

Processing / removal of outliers – simple example

Before:

After:

Resistivity in ohm.m

Processing / removal of outliers – Advanced example

Before:

After:

Processing / removal of outliers – Advanced example

Before:

Processing / removal of outliers – statistical

- 1. Go to display mode and load .inv file after inversion
- 2. Select 'Edit data->RMS error statistics'
- 3. Select the datapoints to remove using arrow keys
- 4. Exit, save modified data, reload

Processing / removal of outliers - statistical

Statistical:

Manual:

Processing / removal of outliers – statistical

Pitfalls of statistical processing:

- The removal of data points is solely based on how well they are fitted by the inversion
- By removing data points with a high misfit we are feeding the inversion "what it wants" and can create artificially god data fits
- That a datapoint isn't fitting doesn't necessarily mean that it is wrong, it can also be due to:
 - 1. The geology is too complicated to be described with the used inversion settings, or at all
- 2. The dataset is so noisy that it is affecting the inversion
- In the worst case we are fitting the noise and throwing away good datapoints

Processing / removal of outliers – hands on

- 1. Load the datafile GRUNDF1.dat. Go to the 'Display' window, and then the 'Display data and model sections' option. The bad data points should be quite obvious.
- 2. leave the 'Display' window, choose 'Edit data' on the top menu bar followed by the 'Exterminate bad data points' option. Pick out the bad data points. After that save the edited data in a file. Read in this edited data file, and then go back to the 'Display' window and check the pseudosection again.
- 3. Leave the 'Display' window, and then run an inversion of the data set using the 'Inversion' and then the 'Least-squares inversion' menu options.
- 4. After the inversion has finished, go the 'Display' window to take a look at the model. After that choose the 'Edit data' and then the 'RMS error statistics' options. Take a look at the bar chart. Is it possible to remove more bad data points?
- 5. Try running an inversion of the data set without first manually removing the bad data points. Then use the 'RMS error statistics' option to remove them. Does this get rid of the bad data points also?
- 6. Compare the inversion results before and after removing the bad data points.

Inversion settings – introduction

As mentioned earlier: The inversion result in ununique

- The result is shaped by the inversion setup
- The inversion setup should reflect prior knowledge and assumptions about the geology
 - Inversion method
 - Damping parameters
 - Model discretization
 - Forward modelling methods
 - Stopping criteria

Inversion settings – Inversion method

Smoothness constrained least square inversion

This formulation constrains the *change* in the model resistivity values, to be smooth but does not guarantee that the resistivity values change in a smooth manner.

Additional Option – Direct smoothing of the model resistivities as well, resulting in a smooth model.

This is the standard inversion method used by Res2DInv!

Inversion settings – Inversion method

Blocky (L1-norm) inversion

Favor models that are piecewise constant which is well suited for discrete geological variations

RES2DINVx64 ver. 4.8.12 :- 902

File Edit Change Settings Inversion Display Topography Options Print Help

	Carry out inversion Calculate region of investigation index		
	Inversion methods and settings	>	Select robust inversion
	Model discretization	>	Modify smoothness-constrained least-squares method
	Model sensitivity options	>	Type of method to solve least-squares equation
	I.P. options	>	Use reference model in inversion
_	Batch mode options	>	Fast inversion of long survey lines or large data sets Use fast Jacobian routines for dense data sets
			Set time-lapse inversion settings
			Floating electrodes survey inversion method

Limit water extent for underwater electrodes survey

in mater exercitor andervater electrodes.

Set DOI parameters

Vertical and horizontal model discretization

The standard discretization is fine in most cases Reasons to change the discretization:

- Slow inversion of large datasets
- Unsatisfactory data fit
- Artefacts in inversion results
- Special conditions or interests

👷 RES2DINVx64 ver. 4.8.12 :- 902

<u>File Edit Change Settings</u> Inversion Display Topography Options Print Help

Calculate region of investigation index		
Inversion methods and settings	>	
Model discretization	>	Display model blocks
Model sensitivity options	>	Change thickness of layers
LP. ontions	>	Modify depths to layers
in reptions		Use extended model
Batch mode options	>	Use model with blocks of same widths
		Reduce effect of side blocks
		Change width of blocks
		Use model refinement
		Set left and right limits of model
		Type of cross-borehole model

Inversion settings Filters / smoothing

RES2DINVx64 ver. 4.8.12 :- 902

<u>File Edit</u> <u>Change Settings</u> <u>Inversion</u> <u>Display</u> <u>Topography Options</u> <u>Print</u> <u>Help</u>

Inversion Damping Parameters	>
Forward modeling method settings	
Inversion Progress Settings	>
Data/Display Selection	>
Save inversion parameters	
Read inversion parameters	

Damping factors
Change of damping factor with depth
Limit range of model resistivity
Vertical/Horizontal flatness filter ratio
Use Diagonal Filter
Use L-Curve method to select damping factor
Limit range of data weights
Reduce variations near borehole
Use sensitivity values to damp variations near boreholes

Assessing the quality of an inversion

- Depth of investigation (DOI)
- Model uncertainty

Assessing the quality of an inversion – DOI

Is a measure of to which degree the inversion result is constrained by the measured data as opposed to the starting model.

$$R(x,z) = \frac{q_1(x,z) - q_2(x,z)}{q_{m1} - q_{m2}}$$

Where q_{m1} and q_{m2} are the starting model resistivities, and $q_1(x,z)$ and $q_1(x,z)$ are the inversion results. Low value = data driven result, high value = constrain driven result.

Assessing the quality of an inversion – DOI

Must be run and loaded as a separate inversion:

👷 RES2DINVx64 ver. 4.8.12 :- 902 - C:\Dropbox (Aarhus GeoSoftware)\KV\tstdat\DCIP\DAT for WB\Eskelund_02_indexd_topo_UTM.dat

<u>F</u> ile	<u>E</u> dit	<u>Change Settings</u>	Inversion	<u>D</u> isplay	<u>T</u> opography Options	<u>P</u> rint	<u>H</u> elp
--------------	--------------	------------------------	-----------	-----------------	----------------------------	---------------	--------------

Carry out inversion	
Calculate region of investigation index	
Inversion methods and settings	>
Model discretization	>
Model sensitivity options	>
I.P. options	>
Batch mode options	>

RES2DINVx64 ver. 4.8.12 :- 902 : Display Sections Window - C:\Dropbox (Aarhus GeoSoftwa

File Display sections Change display settings Edit data Print Exit

Re	ad file with inversion results		1
Re	ad DOI files	>	Read DOI pair of inversion files
м	odel export	>	Read second DOI inversion file
Tr	ace program execution		
Q	uit display window		

Assessing the quality of an inversion – DOI

Assessing the quality of an inversion – uncertainty

Not as precise as DOI, but doesn't require extra calculations

teration 8 RMS error = 2.4 % 0	165.0	245.0	325.0
		and the second	
		en la companya da la	
		• A second se	
		a second a second s	
		a second a second a second	
werse Model Resistivity Section			
nverse Model Resistivity Section			
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section	682 2035 Unit electrode spacing 5.00 m.		
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section wration 8 RMS error = 2.4 %	682 2035 Unit electrode spacing 5.00 m. 165.0	245.0	325.0
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RHS error = 2.4 %	682 2035 Unit electrode spacing 5.00 m.	245.0	325-0
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section eration 8 RMS error = 2.4 %	682 2035 Unit electrode spacing 5.00 m. 165.0	245.0	325.0
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section eration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.0	325.0
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section eration 8 RHS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.0	325.0
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section eration 8 RHS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.6	325.0
verse Hodel Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Hodel Resistivity Section eration 8 RHS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.0	325.0
Verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.0	
erse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RHS error = 2.4 %	682 2835 Unit electrode spacing 5.00 m.	245.0	
erse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.	245.0	
erse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.	245.0	
erse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.	245.0	
Verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section ration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.		
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section aration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.		
verse Model Resistivity Section 2.89 8.62 25.7 76.7 229 Inverse Model Resistivity Section pration 8 RMS error = 2.4 %	682 2835 Unit electrode spacing 5.80 m.		

Inversion settings – hands on

- 1. Read in the data set GRUNDFOR.DAT and carry out the inversion with the default model discretization. You can take a look at the model discretization by selecting the 'Display model blocks' option.
- choose the option to 'Allow number of model blocks to exceed data points', and run the inversion again. Make sure to use a different name for the inversion results file, for example GRUNFOR2.INV. Check out the arrangement of the cells again using the 'Display model blocks' option.
- 3. Now reduce the width of the side cells as well. Select the 'Make sure model blocks have same widths' option, and check out the arrangement of the cells. Next run the inversion again.

Compare the different inversions to see the effect of the model discretization on the inversion result.

Inversion settings – hands on

- 1. Read in the data set BLOCK_ONE.DAT and carry out the inversion with the default settings.
- 2. Next select the 'Select robust inversion' option, and enable both the robust model and data constrains. Run the inversion again, remember to use another name for the .inv file.

Compare the different inversions to see the effect of the inversion settings on the inversion result.

Try the option to display the inversion result as model blocks instead of contours to see the direct infect on the final model.

Inversion settings – hands on

- 1. Read in the data set ODARSLOV.DAT and carry out the inversion with the default settings.
- 2. Next change the inversion settings to robust inversion. Run the inversion again, remember to use another name for the .inv file.
- 3. Note the extreme resistivity values at the bottom-left and bottom-right corners can take. To reduce this effect, select the 'Reduce effect of side blocks' option, and then run the inversion again.
- Compare the different inversions to see the effect of the different inversion settings on the inversion result.
- Again, try the option to display the inversion result as model blocks instead of contours to see the direct infect on the final model.

Visualization options

- Build in visualization
- Exports for visualization in other software

AGS Aarhus GeoSoftware

Visualization options – build in visualization – hands on

- 1. Enter display mode by selecting 'Display-> Show inversion results'
- 2. If you have just run and inversion the result is automatically loaded, otherwise load it in using the file menu
- 3. Load rathcro.inv (use ipmodel.inv to test IP displays)
- 4. Test the different options in:

<u>F</u> ile	Display sections	<u>C</u> hange display set	ttings <u>E</u>	Edit data	<u>P</u> rint	E <u>x</u> it
	Model displ	ay	>	Dis	olay dat	a and model sections
1 20	Sensitivity d	isplays	>	Incl	ude top	ography in model display
Gen	Time-lapse	displays	>	Sav	e conto	ur values
No	Display regi	on of investigation				

Visualization options – build in visualization – hands on

It is often useful to reuse the same color scale to compare results across profiles or inversions:

6. Saving a colorscale:

🧱 RES2DINVx64 ver. 4.8.12 :- 902 : Display Sections Window - C:\Dropbox (Aarhus GeoSoftware)\KV\tstdat'

<u>F</u> ile	Display sections	<u>C</u> hange display set	ttings <u>E</u> d	it data <u>P</u> r	rint E <u>x</u> it				
Ps.	Model displ	ay	>	Display	/ data and	model s	section	s	
	Sensitivity d	lisplays	>	Include	e topograp e resistivity	hy in m	odel d isplav	isplay	
Ø.	Time-lapse	displays	>	Save c	ontour valu	Jes	ispidy		
0. 0.	Display regi	on of investigation			· .				
1	22					•			

7. Loading a colorscale:

Select Type of Contour Intervals							
Set Resistivity Contour Values							
Choose the type of contour spacing you want to use:-							
C Linear contour intervals							
C Logarithmic contour intervals							
O User defined linear contour intervals							
C User defined logarithmic contour intervals							
O User defined contour intervals							
Read contour values from file							
OK Cancel							

Visualization options - Exports

Res2DInv can export visualization results in a range of formats for use in visualization and modelling software:

x64	RES2DINVx64 ver. 4.8.	12 :- 902 : Display Se	ction	s Window -	C:\Dro	pbox (Aarhus Ge	eoSoftware)	\KV\t
<u>F</u> ile	<u>D</u> isplay sections <u>C</u> hange display settings			<u>E</u> dit data <u>P</u> rint E <u>x</u> it				
	Read file with invers							
	Read DOI files	>						
	Model export	>		Save data	in XYZ	format		
	Trace program execution			Save data	.			
_	Quit display window			Model of	utput file in MOD format			
				Model out	tput file	in VTK format		

After the break - Res3DInv

Res3DInv vs Res2DInv

- More complex than Res2DInv because everything is 3D
- Inversion settings and running inversions very similar
- Much more computationally demanding
- Data format is simpler in some ways and more complex in others

Model discretization

Because of the increased computational load of 3D inversion and the increased degrees of freedom much more care must be taken when defining the model discretization

- For structured grids the x-y discretization is defined in the header
- For the arbitrary electrode locations format the x-y discretization is also defined in the header, but can also be edited from within the program
- Also remember to consider the number of layers and the thickness of those
- Rotating the grid can also decrease the size

Res3DInv data format – survey grid and electrode locations

AGS Aarhus GeoSoftware

All the computational grid and electrode positions are specified at the beginning of the file, there are several options:

Res3DInv data format – Uniform and nonuniform rectangular grid - header lines

All the computational grid and electrode positions are specified at the beginning of the file, there are several options:

Uniform rectangular survey grid

Nonuniform rectangular survey grid

1	Unifo	rm rectangu	lar survey o	grid example
2	7	Number of e	lectrodes in x-di	rection
3	7	Number of e	lectrodes in y-dii	rection
4	0.5	Unit electrod	le spacing in x-d	irection
5	0.5	Unit electroc	le spacing in y-d	irection
6	2	Array type (2	2 for pole-pole)	
7	468	Number of d	ata points	
8	0.00	0.00	1.00 0.00	398.05
9	0.00	0.00	1.50 0.00	424.08
10	0.00	0.00	2.00 0.00	413.83
11	0.00	0.00	2.50 0.00	373.76
12	0.00	0.00	3.00 0.00	320.77
	0.00	0.00	0.00 0.50	465.25
				454.78

1	Nonunifo	rm rectar	ngular sui	vey grid	d example
2	9 1	Number of e	electrodes in	x-direction	า
3	9 1	lumber of e	electrodes in	y-directior	า
4	Nonunifo	rm grid	Header ind	licating nor	nuniform grid
5	x-locati	on of gri	id-lines	-	_
6	0.0 1.0	1.5 2.0 2	2.5 3.0 3.	.5 4.0 5.	0
7	y-locati	on of gri	id-lines		
8	0.0 1.0	1.5 2.0 2	2.5 3.0 3.	.5 4.0 5.	. 0
9	2 A	Array type (2	2 for pole-po	ole)	
10	992	lumber of c	lata points		
11	0.000	0.000	1.000	0.000	29.934
12	0.000	0.000	1.500	0.000	29.918
	0.000	0.000	2.000	0.000	29.927
	0.000	0.000	2.500	0.000	29.932

In these grids electrodes can only be located on the grid nodes

Res3DInv data format – arbitrary electrode position - header lines

1 3-D arbitrary electrodes data format

2 68,80 X and Y surface grid size

3 Nonuniform grid Header for non-uniform rectangular grid

4 x-location of grid-lines

571925.000 X-location of all grid lines 5 571900.000 571915.000 571920.000 571880.000 571885.000 571890.000 571895.000 571905.000 571910.000 571965.000 571970.000 571975.000 (global coordinates) 6 571930.000 571935.000 571940.000 571945.000 571950.000 571955.000 571960.000 7 571980.000 571985.000 571990.000 571995.000 572000.000 572005.000 572010.000 572015.000 572020.000 572025.000 8 572030.000 572035.000 572040.000 572045.000 572050.000 572055.000 572060.000 572065.000 572070.000 572075.000 9 572080.000 572085.000 572090.000 572095.000 572100.000 572105.000 572110.000 572115.000 572120.000 572125.000 10 572135.000 572175.000 572130.000 572140.000 572145.000 572150.000 572155.000 572160.000 572165.000 572170.000 11 572180.000 572185.000 572190.000 572195.000 572200.000 572205.000 572210.000 572215.000 12 y-location of grid-lines 6222200.000 Y-location of all grid lines 13 6222155.000 6222160.000 6222165.000 6222170.000 6222175.000 6222180.000 6222185.000 6222190.000 6222195.000 6222250.000 (global coordinates) 14 6222205.000 6222210.000 6222215.000 6222220.000 6222225.000 6222230.000 6222235.000 6222240.000 6222245.000 6222255.000 6222260.000 6222265.000 6222290.000 6222295.000 6222300.000 15 6222270.000 6222275.000 6222280.000 6222285.000 6222305.000 6222310.000 16 6222315.000 6222320.000 6222325.000 6222330.000 6222335.000 6222340.000 6222345.000 6222350.000 6222370.000 17 6222355.000 6222360.000 6222365.000 6222380.000 6222385.000 6222390.000 6222400.000 6222375.000 6222395.000 18 6222405.000 6222410.000 6222415.000 6222420.000 6222430.000 6222435.000 6222440.000 6222450.000 6222425.000 6222445.000 19 6222455.000 6222460.000 6222465.000 6222470.000 6222475.000 6222480.000 6222485.000 6222490.000 6222495.000 6222500.000 20 6222505.000 6222510.000 6222515.000 6222520.000 6222525.000 6222530.000 6222535.000 6222540.000 6222545.000 6222550.000 11 General array data format 21 22 No sub array type Type of data (0=apparent resistivity, 1=resistance) Data unit header 23 Apparent resistivity data 24 Point Electrodes outside grid present Header for arbitrary electrode positions 25 Number of point electrodes Header for number of arbitrary electrodes 26 334 Number of arbitrary electrodes 27 Compressed format used for point electrodes coordinates Header for "compressed format" this is usually used 28 Electrode number, X-location, Y-location, Elevation (only electrodes not located on 29 1, 571884.9200, 6222499.4000, 1.6300 30 571889.8900, 6222498.9800, 1.6500 grid nodes need to be listed here.) 2, 31 3, 571894.8700, 6222498.5600, 1.6700 4, 571899.8400, 6222498.1400, 1.6900 1.7000 5, 571904.8200, 6222497.7300, 6, 571905.4100, 6222545.3600, 1.6300

Res3DInv data format – data lines

The data line format is the same for all grid types:

Pole-pole example with IP:

	C1-X	C1-Y	P1-X	P1-Y	A.Res.	I.P.
298	1.000	2.000	6.000	2.000	9.8064	-0.7452
299	1.000	2.000	7.000	2.000	9.7419	-1.4738
300	1.000	2.000	0.000	3.000	10.3088	2.1841
301	1.000	2.000	1.000	3.000	10.3778	2.6690
302	1.000	2.000	2.000	3.000	10.9918	6.7572
303	1.000	2.000	1.000	4.000	10.5644	4.1239
304	1.000	2.000	3.000	4.000	11.0035	9.2132
305	1.000	2.000	1.000	5.000	10.4259	3.3120
306	1.000	2.000	4.000	5.000	9.9305	1.7297
307	1.000	2.000	1.000	6.000	10.2240	1.8794
308	1.000	2.000	5.000	6.000	9.5697	-2.2696
309	1.000	2.000	1.000	7.000	10.0957	0.9139
310	1.000	2.000	6.000	7.000	9.6073	-2.4194
311	2.000	2.000	3.000	2.000	11.1181	7.9622
312	2.000	2.000	4.000	2.000	11.2147	9.7495
313	2.000	2.000	5.000	2.000	10.5308	5.5019
314	2.000	2.000	6.000	2.000	10.0787	1.7192
	2.000	2.000	7.000	2.000	9.9123	0.1283

General/mixed array example, resistivity only:

N.e	lec	. C1-X	C1-Y	C2-X	C2-Y	P1-X	P1-Y	P2-X	P2-Y	App.Res
30	4	4.000	0.000	3.000	0.000	6.000	0.000	7.000	0.000	30.316
31	4	4.000	0.000	3.000	0.000	7.000	0.000	8.000	0.000	30.694
32	4	4.000	0.000	3.000	0.000	8.000	0.000	9.000	0.000	30.810
33	4	5.000	0.000	4.000	0.000	6.000	0.000	7.000	0.000	29.997
34	4	5.000	0.000	4.000	0.000	7.000	0.000	8.000	0.000	30.236
35	4	5.000	0.000	4.000	0.000	8.000	0.000	9.000	0.000	30.438
36	4	6.000	0.000	5.000	0.000	7.000	0.000	8.000	0.000	29.986
37	4	6.000	0.000	5.000	0.000	8.000	0.000	9.000	0.000	30.096
38	4	7.000	0.000	6.000	0.000	8.000	0.000	9.000	0.000	29.968
39	4	1.000	1.000	0.000	1.000	2.000	1.000	3.000	1.000	30.051
40	4	1.000	1.000	0.000	1.000	3.000	1.000	4.000	1.000	31.123
41	4	1.000	1.000	0.000	1.000	4.000	1.000	5.000	1.000	31.877
42	4	1.000	1.000	0.000	1.000	5.000	1.000	6.000	1.000	31.993
43	4	1.000	1.000	0.000	1.000	6.000	1.000	7.000	1.000	31.854
44	4	1.000	1.000	0.000	1.000	7.000	1.000	8.000	1.000	30.523
45	4	1.000	1.000	0.000	1.000	8.000	1.000	9.000	1.000	29.504
46	4	2.000	1.000	1.000	1.000	3.000	1.000	4.000	1.000	30.581
	4	2.000	1.000	1.000	1.000	4.000	1.000	5.000	1.000	32.157
	4									

Res3DInv data format – extra header for IP

When IP data is present a few extra header lines are added, these are added after the "number of data points" line:

	2 E	nd of grid	definition				
	712 N	umber of o	data point	S			
6	IP present	t IP he	eader				
7	Chargeabi	lity Type	e of IP dat	a			
8	mV/V	Unit	for IP dat	а			
9	0.1,1.0	Dela	y and inte	egration t	time for IF	' data	
10	0.000	0.000	1.000	0.000	10.0544	0.3702 Dat	a lines
11	0.000	0.000	2.000	0.000	10.1311	0.8952	
12	0.000	0.000	3.000	0.000	10.1860	1.3004	
13	0.000	0.000	4.000	0.000	10.1808	1.3179	
14	0.000	0.000	5.000	0.000	10.1235	0.9504	
15	0.000	0.000	6.000	0.000	10.0573	0.4828	
16	0.000	0.000	7.000	0.000	10.0095	0.1319	
17	0.000	0.000	0.000	1.000	10.0544	0.3700	
18	0.000	0.000	1.000	1.000	10.1214	0.8158	
19	0.000	0.000	0.000	2.000	10.1312	0.8948	
20	0.000	0.000	2.000	2.000	10.4994	3.1920	
21	0.000	0.000	0.000	3.000	10.1860	1.2999	
22	0.000	0.000	3.000	3.000	10.5749	4.4965	
23	0.000	0.000	0.000	4.000	10.1808	1.3179	
24	0.000	0.000	4.000	4.000	10.0542	1.8797	
	0.000	0.000	0.000	5.000	10.1235	0.9505	
						-2.3194	

Topography options

Several options:

Z-coordinates on point/arbitrary electrodes (XXX slides back)

Topography in a structured list

Topography at specified points

7.000	10.000	10.000	10.000 12	0.3522			8.000	10.000
8.000	10.000	9.000	10.000 11	5.0855			8.000	10.000
8.000	10.000	10.000	10.000 11	3.3131	Last data lines		9.000	10.000
9.000	10.000	10.000	10.000 10	2.7262		Top	ography	
Topography	Topogr	aphy hea	der			2		Suna
2	Surface	e distance	es used, 1 fo	or true h	norizontal/global distances	Top	ography	/ in uns
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00 Elevation of all grid	Num	ber of	topogra
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00 nodes, in $x \rightarrow and y \downarrow$	121		
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00 directions	Top	ograpny	data p
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.5	0 0.00 0.00 0.00	1	0.0	0.0 0.0
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00	2	2.0	0.0 0.
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00		2.0	0.0 -0
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00		4 0	0.0 -0.
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00	6	5.0	0.0 -1
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00	7	6.0	0.0 -1.
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00	8	7.0	0.0 -0.
0.00 0.00	0.00 -0.5	0 -1.00	-1.50 -1.00	-0.50	0.00 0.00 0.00		8.0	0.0 0.
• End of file	е							
0	-							

	8.000	10.000	9.000	10.000	115.0855			
	8.000	10.000	10.000	10.000	113.3131			
	9.000	10.000	10.000	10.000	102.7262	Last data	lines	
Cop 2 Cop	ography	Topogi Surfac	raphy head e distance	der s used, 1	for true h	norizontal/g	lobal dis	stances
Jum 121	ber of Numb	topograp er of topo	by data po ography po	pints He	ader for r	number of t	opograp	hy points
Cop	ography	y data po	ints (inde	ex, x, y, z)	Header			
L	0.0	0.0 0.00	Point nu	umber, x,	y and z o	coordinate		
2	1.0	0.0 0.0	0					
3	2.0	0.0 0.0	0					
1	3.0	0.0 -0.5	0					
5	4.0	0.0 -1.0	0					
6	5.0	0.0 -1.5	0					
7	6.0	0.0 -1.0	0					
	7.0	0.0 -0.5						

0

Inversion settings & other options

The inversion and settings and other options are very similar to Res2DInv

- Smoothness constrained (L2) and and robust/blocky (L1 norm) inversion methods
- Limit on model resistivities, vertical and horizontal flatness filters etc.
- Underwater surveys and buried electrodes
- Fixed regions and known boundaries

Special options in Res3DInv

- Combination of Res2DInv data files into Res3DInv data files
- Time lapse inversion for tracking the changes in datasets and models between measurements
- Used for monitoring lands slides, injections, migration of tracers/pollutions and remediation

Combine Res2DInv data files into Res3DInv data files

8

9

10

11

12

13

14

15

17

18

19

20

Lines in an orthogonal grid

Collate 3 Lines Title line Number of files to collate Header for number of files to combine 3 Number of files to combine 4 File 1 parameters Header for file 1 5 Name of data file in RES2DINV format Header for file name 6 d:\test\FILE2D 1.DAT Full file path and file name for file 1 7 X and Y location of first electrode along this line Header for line location 8 0.0,0.0 X and Y location of first electrode in line 9 Line direction (0=X, 1=Y) Header for line direction 10 0 Line is in X direction (1 for Y direction) 11 Line sign (0=positive, 1=negative) Header for line sign 12 0 Electrode numbers increase in positive direction in 3D grid 13 File 2 parameters Same information for file 2 Name of data file in RES2DINV format 15 d:\test\FILE2D 2.DAT 16 X and Y location of first electrode along this line 17 0.0,-0.5 Line direction (0=X,1=Y) 18 19 0 20 Line sign (0=positive,1=negative) 21 0 22 File 3 parameters Name of data file in RES2DINV format d:\test\FILE2D 3.DAT 25 X and Y location of first electrode along this line 26 0.0,-1.0 Line direction (0=X,1=Y) 28 0 29 Line sign (0=positive,1=negative) 30 0 Name of Output file in RES3DINV format Header for output file name d:\test\FILE 3D.dat Full file path and file name for output file 33 End of file

Lines in arbitrary directions

3-D arbitrary electrod	es data format <mark>Title line</mark>
Number of files to col	late Header for number of files to combine
3 Number of files to combi	ine
Arbitrary point electr	odes format Header for arbitrary electrode locations
X model grid spacing H	leader for model X discretization
1.0 Model discretization	in X-direction
Y model grid spacing H	leader for model V discretization
1 0 Model discretization	in V-direction
File 1 parameters Hea	der for file 1
Name of data file in D	RESET THE T
Name of data file in K	00 pm Full file peth and file perse for file 1
C: \Test\block32x19b-x-	o information for file 2
File 2 parameters Sam	e information for the 2
Name of data file in R	ESZDINV format
c:\Test\block32x19b-x-	02.DAT
File 3 parameters	
Name of data file in R	ES2DINV format
c:\Test\block32x19b-x-	04.DAT
Name of Output file in	RES3DINV format Header for output file name
c:\Test\block32x19b-3D	dat Full file path and file name for output file
End of file	RES2DINVv64 ver. 4.8.18 :- 902
	File Edit Change Settings Inversion Display Topography Options Print Help
	Read data file
Elles and southing d	Round up positions of electrodes
Flies are combined	Automatically switch electrodes Cut-off factor to remove data
using ReszDinv:	Calculate errors from repeated readings
	Data Import >
	Collate data into RES3DINV format
	Concatenate data into RES2DINV format
	Save sorted data after reading in data file

AGS Aarhus GeoSoftware

Data processing/removal of bad data points in Res3DInv

Due to the huge amount of data points and 3D complexity of 3D ERT data it is hard to do visual/manual processing of the data to improve inversion results, there are 2 options:

- The statistical approach based on an initial inversion as demonstrated in Res2DInc
- For datasets joind of serveral 2D lines the manual processing can be done to the 2D lines using Res2DInv prior to combining the lines into a 3D data file

AGS Aarhus GeoSoftware

Resistivity

78.0237

77.4654

78.3246

90.6875

71.4942

69.6839

54.0520

46.1332

36.8043

26.2511

22.3539

18.2205

16.1321

19.2623

49.2114

64.9709

212.7277

413.8167

84.9816

17.5093

22.2833

62.1920

122.4661

173.3137

160.3539

136.4403

237.3000

313.0403

Conductivity

0.012817

0.012909

0.012767

0.011027

0.013987

0.014351

0.018501

0.021676

0.027171

0.038094

0.044735

0.054883

0.061988

0.051915

0.020320

0.015392

0.0047008

0.0024165

0.011767

0.057113

0.044877

0.016079

0.0081655

0.0057699

0.0062362

0.0073292

0.0042141

0.0031945

Visualization

Res3DInv has several visualization options, to enter "display mode" select 'Display->display results'

Classic build in visualization:

3D Viewer:

Exports:

Classic build-in visualization

In this mode it is possible to show vertical and horizontal slices of the inverted model on a color scale, the settings and options are very similar to those of Res2DInv.

RI	ES3DINVx6	54 ver. 3.15.11 Profe	essional	- ID. No. : 9	15 - Dis	splay W	indow	
<u>F</u> ile	<u>D</u> isplay	<u>C</u> hange display se	ettings	<u>E</u> dit data	<u>P</u> rint	<u>H</u> elp	Exit	
196	Dis	play inversion mod	lel					1
× gi	Dis	play model with to	pograp	hy				
Nor	Dis	play model with 3D	Viewer					
	Dis	play apparent resist	tivity or	IP				
Uni	Dis	play measured and	calcula	ted appare	nt resisti	ivity		
Nor	Dis	play resistivity or IP						
Me	Dis	play model sensitiv	rity valu	ies				
Nur	Dis	play data sensitivity	y values	;				:d.
Dis	Dis	play model resoluti	ion					5.
No	Dis	play depth slice						
Nur IP c	Sav	/e depth slice						us 1.00 and 10.00
IP v	Dis	play model change						[
Dat: Mar	Sel	ect type of model o	hange	to display				
Che	cking d	ata positions						,
Тор	ography	present with a	verag	e height 4	86.14			
Che	ck glob	al coordinates						
Nur	u electro nher of	iae numbers electrodes used	l ie 35	7				
Min	imum a	nd maximum ps	seudo	 depths ar	e 25.4	5 and	164.3	8
Сор	y data j	parameters						
lter	ation 3 -	RMS error 16.7	6					
lter	ition 3 - IP RMS error 1.00							

Display model options	>
Iteration number to display : Max. 4	
Number of sections to display: 2 to 8	
Display Type • Horizontal Sections C Vertical Sections	
• XZ slice O YZ slice	
Select the type of model to display. Resistivity model O IP model	
OK Cancel	

3D Viewer

Can be used to view results in 3D both during and after inversion.

To display results during inversion:

To display results after inversion in display mode:

RES3DINVx64 ver. 3.16.6 Professional - ID. No. : 915 - Display Window
 File Display Change display settings Edit data Print Help Exit
 Display inversion model
 Display model with topography
 Display model with 3DViewer
 Display apparent resistivity or IP
 Display measured and calculated apparent resistivity
 Display model sensitivity values
 Display data sensitivity values
 Display data sensitivity values
 Display depth slice
 Save depth slice

3D Viewer – Live demo

- Display models during inversion Display mode:
- Rotation, zoom and move center
- Axes and center
- Layer selection
- Color scale
- Wire frame
- Cut planes and subnodes

Bonus – Res2DInv and Res3DInv results in Aarhus Workbench

It is possible to load inversion results from Res2DInv and Res3DInv into Aarhus workbench for improved visualization and interpretation options, in the following a few examples are shown. For instruction on how to use these options please refer to the manual for using Res2DInv inversion results in Aarhus Workbench, which can be downloaded here: XXXXXXXX Note that these options require a Aarhus Workbench Essential License.

AGS Aarhus GeoSoftware

Show location of data, inversions, boreholes etc. on a GIS map

Create horizontal maps, showing e.g. mean resistivity

Display 2D and 3D inversion results in the 3D viewer

Create automatized PDF reports for fast reporting on fieldwork

🐼 Rep	ort Editor - [2018-07-02_knud.lassen] - New	report, not saved		- 🗆 X
Save	Load Print Report	s Preview Page Navigation	New Copy Delete Page Edit Zoom	
Т	Text Project Title Text			
T	Resistivity Profiles (ohmm) Text Inversion type			ure 2(5x/2+x/2H)
/	Profile Name SW-NE-01	Axis Min/Max Mode X-Axis Scale 1: 2000 As defined on profil V Vertical Exaggeration 1: 3	00 ♥ X Min 0.00 ♥ Y Min 0.00 ♥ X Max 0.00 ♥ Y Max 0.00 ♥	
Т	Text The profiles display model bars from the smo			
/	Profile Name SW-NE-02	Axis Min/Max Mode X-Axis Scale 1: 2000 As defined on profil \checkmark Vertical Exaggeration 1: 3	00	
	Profile Name SW-NE-03	Axis Min/Max Mode X-Axis Scale 1: 2000 As defined on profil \checkmark Vertical Exaggeration 1: 3	00	
	Workbench Map Map Center (X,Y) Data) Rotation Map Scale 6230656 Rotation Map Scale 0 1: 50 000	Map Layers Show Axes	
Т	Text Models have been blanked by 90% below the			AGS Aarhus GeoSoftware
Т	Text Line 1 (South-North)		Course oute	v

AGS Aarhus GeoSoftware Perform geological interpretation using geological surfaces

Thank you – questions?